Our view from Earth has always been pretty good, aside from clouds and glare. It was transformed by telescopes in the 1600s, though, and has improved wildly ever since. From X-ray telescopes to the atmosphere-bypassing Hubble Space Telescope, it's hard to even believe what we can see now.

And despite all they've done, telescopes are just getting started. Astronomy is on the verge of another Hubble-like disruption, thanks to a new breed of mega-telescopes that use huge mirrors, adaptive optics and other tricks to peer deeper into the sky — and further back in time — than ever before. These billion-dollar projects have been in the works for years, from hulks like Hawaii's controversial Thirty Meter Telescope to the James Webb Space Telescope, Hubble's highly anticipated successor.

Today's largest ground-based telescopes use mirrors 10 meters (32.8 feet) in diameter, but Hubble's 2.4-meter mirror steals the show because it's above the atmosphere, which distorts light for observers on Earth's surface. And the next generation of telescopes will outshine them all, with even more enormous mirrors as well as better adaptive optics — a method of using flexible, computer-controlled mirrors to adjust for atmospheric distortion in real time. The Giant Magellan Telescope in Chile will be 10 times more powerful than Hubble, for example, while the European Extremely Large Telescope will gather more light than all existing 10-meter telescopes on Earth combined.

Most of these telescopes won't be operational until the 2020s, and some have faced setbacks that could delay or even derail their development. But if any really do become as revolutionary as Hubble was in 1990, we better start preparing our minds now. So, without further ado, here are a few up-and-coming telescopes you'll probably hear a lot about in the next few decades:

1. Thirty Meter Telescope (Hawaii)

Artist's illustration of the Thirty Meter Telescope in Chile In addition to working alongside the James Webb Space Telescope, the Thirty Meter Telescope would be on the lookout for dark matter. (Image: Thirty Meter Telescope)

The Thirty Meter Telescope's name speaks for itself. Its mirror would be triple the diameter of any telescope in use today, letting scientists see light from farther and fainter objects than ever before.

The TMT project has been in the works since the 1990s, envisioned as a "powerful complement to the James Webb Space Telescope in tracing the evolution of galaxies and the formation of stars and planets." It would join 12 other giant telescopes already perched atop Mauna Kea, the tallest mountain on Earth from base to peak and a mecca for astronomers around the world. The TMT received final approval in 2014, but a groundbreaking ceremony later that year was disrupted by protestors who don't want the telescope built on Mauna Kea.

TMT has offended many Native Hawaiians, who oppose further construction of large telescopes on a mountain that's considered sacred. And in December 2015, Hawaii's supreme court ruled TMT's construction permit invalid, arguing the state didn't let critics voice their grievances at a hearing before it was granted. The project is in limbo, but supporters are reportedly working to get it re-approved.

Beyond studying the birth of planets, stars and galaxies, the TMT would also serve an array of other purposes, like shedding light on dark matter and dark energy, revealing connections between galaxies and black holes, discovering exoplanets, and searching for alien life.

2. European Extremely Large Telescope (Chile)

European Extremely Large Telescope illustration The European Extremely Large Telescope will be the largest telescope on Earth once it's completed. (Image: L. Calçada/ESO)

Some 7,000 miles southeast of Mauna Kea, another astronomy wonderland is also on the cusp of a growth spurt. Chile's Atacama Desert is the driest place on Earth, almost completely lacking the precipitation, vegetation and light pollution that can muddle the skies in other parts of the world.

Already home to the European Southern Observatory's La Silla and Paranal observatories — the latter of which includes its world-renowned Very Large Telescope — and several radio astronomy projects, the Atacama will soon also host the European Extremely Large Telescope, or E-ELT. Construction on this aptly named behemoth began in June 2014, when workers blasted away some flat space atop Cerro Armazones, a 10,000-foot mountain in the northern Chilean desert.

Once completed in 2022, the E-ELT will be the largest telescope on Earth, boasting a main mirror that stretches 39 meters across. Like the TMT, its mirror will be composed of many segments — in this case 798 hexagons measuring 1.4 meters each. It will collect 13 times more light than today's telescopes, helping it scour the skies for hints of exoplanets, dark energy and other elusive mysteries. "On top of this," the ESO adds, "astronomers are also planning for the unexpected — new and unforeseeable questions will surely arise from the new discoveries made with the E-ELT."

3. Giant Magellan Telescope (Chile)

Giant Magellan Telescope illustration The Giant Magellan Telescope will scan the skies for alien life on distant worlds. (Image: Giant Magellan Telescope)

Another addition to Chile's impressive telescope collection is the Giant Magellan Telescope, planned for Las Campanas Observatory in the southern Atacama. The GMT's unique design features "seven of today's largest stiff monolith mirrors," according to the Giant Magellan Telescope Organization. These will reflect light onto seven smaller, flexible secondary mirrors, then back to a central primary mirror and finally to advanced imaging cameras, where the light can be analyzed.

"Under each secondary mirror surface, there are hundreds of actuators that will constantly adjust the mirrors to counteract atmospheric turbulence," the GMTO explains. "These actuators, controlled by advanced computers, will transform twinkling stars into clear, steady points of light. It is in this way that the GMT will offer images that are 10 times sharper than the Hubble Space Telescope."

As with many next-generation telescopes, the GMT is setting its sights on our most vexing questions about the universe. Scientists will use it to search for alien life on extrasolar planets, for instance, and to understand how the first galaxies formed, why the universe is mostly made of dark matter and dark energy, and what the universe will be like a few trillion years from now.

4. Large Synoptic Survey Telescope (Chile)

Large Synoptic Survey Telescope illustration The Large Synoptic Survey Telescope will have a camera about the size of a small car. (Image: Large Synoptic Survey Telescope Corporation)

Larger mirrors aren't the only key to building a game-changing telescope. The Large Synoptic Survey Telescope will measure just 8.4 meters in diameter (which is still pretty huge), but what it lacks in size it makes up for with scope and speed. As a survey telescope, it's designed to scan the entire night sky rather than focus on individual targets — only it will do so every few nights, using Earth's largest digital camera to record colorful, time-lapse movies of the sky in action.

That 3.2 billion-pixel camera, about the size of a small car, will also be able to capture an extremely wide field of view, taking images that cover 49 times the area of Earth's moon in a single exposure. This will add a "qualitatively new capability in astronomy," according to the LSST Corporation, which is building the telescope along with the U.S. Energy Department and National Science Foundation.

"The LSST will provide unprecedented three-dimensional maps of the mass distribution in the universe," the telescope's developers add, which can be used to shed light on the mysterious dark energy that drives the universe's accelerating expansion. It will also produce a full census of our own solar system, including potentially hazardous asteroids as small as 100 meters. Construction on the LSST could start this year, and it's scheduled to begin operation in 2022.

5. James Webb Space Telescope

Illustration of the James Webb Space Telescope Three times the size of Hubble, the James Webb Space Telescope should be able to gaze deeper into ancient space. (Image: Northrop Grumman/NASA)

NASA's James Webb Space Telescope has big shoes to fill. Designed to succeed Hubble and the Spitzer Space Telescope, it has generated high expectations — and expenses — during nearly 20 years of planning. It was initially intended to launch this year, but cost overruns have pushed that back to 2018. The JWST price tag soared past its $5 billion budget in 2011, nearly leading Congress to nix its funding. It eventually survived, and is now limited to an $8 billion cap set by Congress.

As with Hubble and Spitzer, JWST's main strength comes from being in space. But it's also three times the size of Hubble, letting it carry a 6.5-meter primary mirror that unfolds to reach full size. That should help it trump even Hubble's mind-blowing images, providing longer wavelength coverage and higher sensitivity. "The longer wavelengths enable the Webb telescope to look much closer to the beginning of time and to hunt for the unobserved formation of the first galaxies," NASA explains, "as well as to look inside dust clouds where stars and planetary systems are forming today."

Hubble is expected to remain in orbit until at least 2027, and possibly longer, so there's a good chance it will still be at work when JWST arrives on the job in a few years. (Spitzer, an infrared telescope launched in 2003, was designed to last 2.5 years but may keep working until "late in this decade.")

6. WFIRST-AFTA

The JWST isn't the only exciting new space telescope on NASA's plate. The agency also acquired two repurposed spy telescopes from the U.S. National Reconnaissance Office (NRO) in 2012, each of which has a 2.4-meter primary mirror along with a secondary mirror to enhance image sharpness. Either of these secondhand telescopes could be more powerful than Hubble, according to NASA, which now plans to use one for a proposed mission to study dark energy from orbit.

That mission, titled WFIRST-AFTA (for "Wide-Field Infrared Survey Telescope - Astrophysics Focused Telescope Assets"), was originally going to use a telescope with mirrors between 1.3 and 1.5 meters in diameter. The NRO spy telescope will offer substantial improvements over that, NASA says, potentially yielding "Hubble-quality imaging over an area of sky 100 times larger than Hubble."

WFIRST-AFTA is expected to settle fundamental questions about the nature of dark energy, which makes up roughly 68 percent of the universe yet still defies our attempts to understand what it is. That could reveal all kinds of new information about the evolution of the universe, but as with most high-powered telescopes, this one is a multi-tasker. Beyond demystifying dark energy, WFIRST-AFTA will also join in the rapidly growing quest to discover new exoplanets and even entire galaxies.

"Where Hubble has found only a few galaxies within 500 million years of the Big Bang," NASA says, "we now know that an NRO-enabled WFIRST-AFTA will find hundreds of these rare objects."

7. Five-hundred-meter Aperture Spherical Telescope (China)

The FAST under construction in 2015 FAST is similar to the Arecibo Observatory, but it has a number of improvements compared to the Puerto Rico-based telescope. (Photo: VCG/VCG/Getty Images)

Not to be outdone, China has recently completed construction of its own giant telescope with the Five-hundred-meter Aperture Spherical Telescope (FAST) project, located in Guizhou province. With a reflector diameter roughly the size of 30 football fields, FAST is almost twice as large as its cousin, the Arecibo Observatory in Puerto Rico. While both fast FAST and Arecibo are massive radio telescopes, FAST can shift its reflectors, of which there are 4,450, to different directions to better investigate the stars. The Arecibo's reflectors, in contrast, are fixed in their positions and rely on a suspended receiver to navigate space's signals. Once it's up and operational, which is expected to be in September 2016, the telescope will seek out gravitational waves, pulsars and, of course, signs of alien life in the universe.

FAST was not without controversy, though. The Chinese government moved 9,000 people who were living within a 3-mile radius of the telescope site. Residents were given roughly $1,800 to aid their efforts to find new homes. The goal of the move, according to government officials, was to "create a sound electromagnetic wave environment" for the telescope to operate.

This story has been updated with new information since it was published in August 2014.

Russell McLendon ( @russmclendon ) writes about humans and other wildlife.